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F and D couplings of baryons and mesons are shown to arise naturally with a simple extension of the gauge 
formalism to a (SU3XSU3).LX(SU3XSU3)fl group structure. In its general formulation the theory needs 
parity doubltets of (0+) and (0—) ninefolds. It admits of (two types of F and D coupled) (1+) and (1—) 
vector and axial-vector meson multiplets, a specially attractive combination of currents which emerges from 
the formalism being an equal mixture of vector F with axial-vector D [the case of (SU 8 )LX(SU8)JB]- The 
theory also admits an approximate (Bronzan-Low) type of quantum number. 

1. INTRODUCTION 

W ITH the discovery of SU3 as the strong inter
action symmetry group,1 with the discovery 

that the electromagnetic current (for strongly inter
acting particles) is part of the SU3 structure,2 and that3 

(at least in their semileptonic aspects) weak currents 
of strongly interacting particles also belong to SU3, a 
complete theory of elementary interactions seems not 
too distant. In this series of papers we make a pre
liminary attempt towards determining their underlying 
group structure and to construct a gauge theory of 
strong, weak, and electromagnetic interactions. We 
believe that the gauge principle4 must be an essential 
ingredient of any attempt to construct a fundamental 
theory. The gauge principle is the only known way to 

* Permanent address: Johns Hopkins University, Baltimore, 
Maryland. 

1 The remarkable discovery of Or first predicted by M. Gell-
Mann [CERN Conference Report (1962)] and discovered by 
V. E. Barnes et al. [Phys. Rev. Letters 12, 204 (1964)], seems to 
leave little doubt about the correctness of SU3 symmetry. The 
unitary group was first introduced in elementary-particle physics 
by M. Ikeda, S. Ogawa, and Y. Ohnuki [Progr. Theoret. Phys. 
(Kyoto) 22, 715 (1959); Y. Yamaguchi, Progr. Theoret. Phys. 
Suppl. (Kyoto) 11, 37(1959)]. These authors correctly predicted 
the completion of the (0—) multiplet (*?,TT,K) though they followed 
Sakata in assigning baryons to the threefold representation. 
Following this the work of A. Salam and J. C. Ward [Nuovo 
Cimento 20, 419 (1961)] stressed the eightfolds of both ( 1 - ) and 
(1+) gauge particles associated with the unitary group (the 
group-structure SU3XSU3). (The importance of spin-one multi-
plets lies in the fact that the gauge particles must belong to the 
regular representation of the symmetry group, and therefore 
provide the 'invariant signature' of the 'group' in contrast to 
any of its other representations.) The eightfold way was completed 
by Y. Ne'eman [Nucl. Phys. 26, 222 (1961)], and M. Gell-Mann 
[Phys. Rev. 125, 1067 (1962)], and California Institute of Tech
nology Report CTSL 1961 (unpublished), who first pointed out 
that in addition to (0—) and (1—) multiplets the known baryons 
can also be associated with an SU3 multiplet of eight. For some re
cent attempts to make use of the fundamental threefold unitary 
multiplet see M. Gell-Mann [Phys. Letters 8, 214 (1964)], J. 
Schwinger [Phys. Rev. Letters 12, 237 (1964)], F. Giirsey, T. D. 
Lee,and M. Nauenberg [Phys. Rev. 135, B467 (1964)], and G. 
Zweig, Phys. Rev. (to be published). 

2 M . Gell-Mann. Phys. Rev. 92, 833 (1953); K. Nishijima, 
Progr. Theoret. Phys. (Kyoto) 10, 549 (1953). 

3 N. Cabbibo, Phys. Rev. Letters 10, 531 (1963). 
4 C. N. Yang and R. Mills, Phys. Rev. 96, 191 (1954); R. Shaw, 

dissertation Cambridge University, 1954 (unpublished); R. 
Utiyama, Phys. Rev. 101, 1597 (1956); S. Bludman, Nuovo 
Cimento 9, 433 (1958); A. Salam and J. C. Ward, Nuovo Cimento 
11, 568 (1959); J. J. Sakurai, Ann. Phys. (N. Y.) 11, 1 (1960); 
J. Schwinger, Proc. Trieste Seminar, IAEA (1962); M. Gell-
Mann and S. Glashow, Ann. Phys. (N. Y.) 15, 437 (1961). 

write down currents 7M which are not simple "static" 
expressions of a conservation property, but also form 
part of the interaction Hamiltonian (H\nt=J»A M). 
And on a pragmatic level, gauge theories seem to be 
the only spin-one theories which have so far been 
renormalized.6 Our major tool is a new extension of the 
gauge principle to include what we call double gauges. 
This extension is made possible by the fact that the 
'unitary' group possesses two elementary represen
tations which admit of independent transformations. 
We use this new formalism to construct a theory of 
strong interactions in the present paper, while the 
problem of weak and electromagnetic interactions will 
be considered elsewhere. 

2. THE DOUBLE GAUGE FORMALISM; LEFT 
AND RIGHT GAUGES 

We first summarize the conventional "single-gauge" 
formalism. Let \p be a set of spin-| particles, corre
sponding to an elementary (Sakata) representation of 
the group U3. The single-gauge principle starts with 
the free-kinetic-eneigy term 

£ / = - ^ t ( 7 4 Y A ¥ (1) 

which is invariant for the unitary transformation 

p=UoU$. (2) 
Here 

T« (a = 0, 1, 
satisfy6 

(3) 
Z7o=exp(ie°), 

tf=expi(7V), 

8) are nine Hermitian matrices which 

\T\T^ic^T\ i,j,k=l, ••-,», (4) 

{ T*?*) = (V*)8«r»+d'*r*, i, j , k=1, • • •, 8, (5) 

r ° = ( l A / 6 ) l , (6) 
and 

Tr(r a)2 = | . 
6 Abdus Salam, Phys. Rev. 130, 1287 (1963); Abdus Salam and 

R. Delbourgo, Phys. Rev. 135, B1398 (1964). 
6 The Greek indices run from 0 to 8, the Latin indices from 1 to 

8. For definition of Cijk and d*ik
f we use the notation of M. 

Gell-Mann (Ref. 1). 
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If we now require that the €a's in (2) depend on space-
time Xp, one must replace d^d/dx^ in (1) by the 
'covariant' derivative 

^d.+igX.+ifX*, (7) 
where Xli='^2TiX/ and X / are eight vector fields with 
the transformation character, 

1 

and 

X / = UX, U~l+—Ud.U-1 

X / = XM° . 

(8) 

g° dx„ 

The relation (8) can be inferred from the requirement 

(3d^Y=U(S),f). (9) 
Defining 

X fxV — cD/tA. v cD»/A ^ 

^ x , - d , x „ + ^ [ x M , x j , (io) 
it is easy to verify that 

X»v — U X uVU (11) 
All in all then, the Lagrangian 

= —yf/^a^n^-l TrX^X^ 
-iX^X^-m^y^ (12) 

is invariant for the transformations 

Z / = UX,U-1+ 1/igUdtU-1, (13) 
xlp'=x)l

0-(i/g)d^/dxll. 
As usual one may define currents J„a from the relation 

*W„«= E (3£/3^)50. (14) 
=t,F 

From (14) and using equations of motion for <p and F 

ie^cVV^JG, (15) 

For an invariant <£, 5J£ = 0, so that all nine currents 
are conserved. 

B. The Double-Gauge Formalism 

For (mixed) tensor representations of the unitary 
group, the single-gauge formalism can be generalized 
in the following manner. Write the 3X3 representation 
in the form7 

^ = V ? ( 7 V ) . (16) 

^ 7 To identify the transformation character of the fields ^ con
sider the corresponding (Hermitian) boson matrix M—J2MaTa. 
With the notation 

TT*- (l/v2) (Ml^FiM*), K±= (l/v2) (M^iM5) 

K°,K°=(l/y/2)(M^iM7), ir«=M\ rf> = M*, aa=MQ 

M* -+-
K° 

K+ 

ic° 
-2r?° a-0 

V6 +v3j 

The single-gauge formalism would start in this case 
with the transformation 

f^UoUfU-K (17) 

We generalize this to consider two independent unitary 
transformations U\ and U2y 

f=u0UifUr1 (18) 

which leave <£/ invariant, 

<£/ = ~ Tr^f74TM^4 - m0 Tr^fT^. 

The 'gauge principle' leads in this case to the covariant 
derivative, 

^^d^+igi'Z^-ig^Zt^+i^Z^, (19) 

which transforms as 

(^rPy=UoU1(^^)U2-\ (20) 
provided 

(zlfi)'= u1(zllx) url+ (1/tgiO u^ur1, (21) 
(Z2M)'= U2(Z2JX) U2~

X+ (l/ig2') U2d,U2~', (22) 

The crucial remark is that each of the fields Z\ and Z2 

transforms independently as representation8 of SU3. 
The invariant Lagrangian is given by 

£ = - Tr#y47A.£>^- J Tr2Z^Z^» Trmo^tT^. (23) 

The fermion interaction term in (23) equals 

cCint~ T r [ - î t74Yj» (giZi^-g^Z^) 
-iftfy<Yd>Zfi (24) 

= Tr[~i/v2(^t747,[^M^]+^tT47,{^^}) 
-^Wt747^M°] , (25) 

where 
^ = T<FS= l/^2(g/Zlfi+g2

fZ2tl), 

Z>M= r*Ztf= l/v2(gl%,--g2 'Z2;,). 

There is thus a total of 18 conserved currents, corre
sponding to the group generators, eight grouped in 
the commutator combination, 

T r ^ t O [ ^ ] = T r F ( - ^ O ^ t - ^ W ) , (26) 

and the remaining in the anticommutator, 

Tri£tO{Zty} = TrD(-rPOtH+HO^) ^^2d^k(^YO^)Dk 

+^^p'Ox^°+^0^)DK (27) 

The currents remain conserved even for the addition 
of gauge-meson mass terms to (23) 

<£m= — \ Tr(Mi2ZiMZiM+ju2
2Z2MZ2M). (28) 

8 Terms like (28) are not invariant for the general transforma
tion (21) and (22). They are invariant however for non #M-
dependent Ui's and CVs. This is all that is necessary for current 
conservation, 
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(30) 

C. R Parity 

D and F interactions can be distinguished if following 
Gell-Mann one defines R parity rj for a field from the 
relation 

RxPR-^rj^7 ity==fcl. 
Since 

T r 4 [ £ , C ] = -TrAT[_BT,CT~] 

TrA {B,C} = +TTA T{BT£T) , 

D and F transform oppositely. If the theory is R 
invariant, one must choose 

(in order that D^ and F^ are orthogonal) .9 

(2) rjD= + l, r}F=—l. 

3. INCLUSION OF AXIAL VECTOR INTERACTIONS 

A. 

Neglecting the fermion mass term — mo Tr^fY^, one 
may split \p into its right and left components^ 

l K * = i ( l ± Y 5 ) * . (29) 

As before consider the independent transformations 

W=V*V&RVrl 

IL^VO'V^LVC1. 

To gauge the free Lagrangian 

replace 

dpR by ^urtpR^d^R+igiFi^R 

—ig2^RF2»+igoFQ\l/R, 

d„L by ^^L^d^L+igzF^L 

The fields Fh F2, Fz, FA transform independently of 
each other. Incorporating the g's in the definition of the 
JF'S, the linear part of <£int equals 

£int= -iTrtyRJFrtR-j/RtyRFt+trfF&PL 

-^L^LF.+^R^RFO+^L^LFO') 

+Hy^flF1+Fz+F2+F4, * ] 

+ t̂Y4Y/xY5{ -Fx+Fz+Fi-Ft, $} 

+i#tY4Y^CFo+2V) 
+Wftatf*(F*-F<!). (32) 

There are four types of conserved currents D—V, 
D—A, F— V, F—A corresponding to the 36 generators 

9 Note that in terms of the 'pure* fields F and Dt 

(31) 

for the underlying group structure. We show in Ap
pendix I that the vector currents remain conserved 
even for the inclusion of Fermi mass terms. 

B. Spin-Zero Fields 

For Hermitian spin-zero fields M, the only trans
formation which preserves hermiticity is the single-
gauge transformation 

M'^UMU-1. 

For a non-Hermitian M, M = ( M i + i M 2 ) one can 
however allow double gauges 

M'^UoUMU*-1. 

Infinitesimally, Ui~l-{-iXh £ / 2 ~l+^X 2 , 

M1
/==M1-UX1--X2,M2}+ULXi+X2,M1li-e

QM2, 

M2, = M2+h{Xi-X2, Jf i } + J i [ X i + X 2 > Md+fMi. 

The invariant Lagrangian equals 

- £ Tr(S)MM)+(^M) - \ Ti#M+M 

- - \ Tr((dllMl+i/^tVfi,M1-]- \/^2{All,M2})2 

\+ (d,M2+i/^2LV,JM2]+^/^2{Afi1Mi})2, 
-U2Tr(M1*+M22), (33) 

where 

Vli=l/^2(X1+X2)fi, A^l/^2(X1~X2)fi. (34) 

The conserved currents are 

5£ meson ^ 

8£„ 
(35) 

where 
F^d^-drFt+igZFnFJ+igZDtM, 
D,v~d»Dv-d^+igtDyLiFv']+ig[FiliDv']. 

-= —({d l iMhM2} - {d,M2,Mi}) • 

4. TOWARDS A THEORY OF STRONG 
INTERACTIONS 

At this stage with one fermion nine-fold^^R-^-^L 
corresponding to the group structure (SUsXSUs)^ 
X(SU3XSU3)i2 and one meson ninefold M = M i + i M 2 , 
each gauged independently as 

rPLf=Vo'Vz+LVrl, (36) 

M,= UoU1MU2~1, 

there is a total of six types of gauge fields; four of 
these, i.e., Fh F2 , Fz, FA interact only with fermions \p 
and two fields X\ and X2 only with mesons M. In 
order that fermions and mesons interact with each 
other at all some of the U transformations must be 
identified with the V transformations subject of 
course to P and C conservation. 

In Appendix I I we list P , C, and R parities of the 
currents in (32) and (33). This listing shows also 
the resistrictive power of the gauge formalism which 
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stems from the fact that "pure" P- and .^-conjugate 
fields are 'mixtures' of the gauge F's and X's. (R-
invariance has been listed in so far as it may prove an 
approximate symmetry for strong interactions). 

To construct a realistic theory, consider the case 
where we start with one scalar and one pseudoscalar 
boson multiplet: 

Afi=0- Af2=0+. 

and either 

i.e., 

or 

i.e., 

A. P Invariance 

From (Al) and (A5) we must require for parity 
conservation: 

gl=g*> g2=g4, 

Xi=Fi7 X2—Fz, 

Vi=Vu U2^Vz, 

Xi=^F2, X2 — F4, 

U^V*, U2^VA. 

Using the notation of (34), i.e., 

•^V=Fl+Fz=X1+X2, ^J2V'=F2+F4, 

^A=Fi+Fz=X1-X2, ^2A'=F2-F4, 

the linear part of the <£int equals: 

C7,]5^(^) + { T , } ^ y P ) + CT,75]^( /0 + {TM75}^(Z)) 

+ lMu6M1JiSv(F)+Sv(D)2 

+ lMhdM2TSA(F)+SA(D)l 

+A° Tr(^t747MT5^)+ (M1dfiM2-M2d»Mi). (37) 

B. y5 Invariance 

The P-invariant gauge Lagrangian (37) is invariant 
also for the "75" transformation 

$R'-*4'L 

F,-*F4J ' 
Mi—> —Mx 

M% —>+Mi. 

V, V-
A,A'-

+ +(V,V) 
*-(A,A') 

[To see this most simply refer to (31) and (33).] 
Since ^R—^^L is a tenable transformation, only if 

mass terms vanish, we have the important result that 
if fermion masses are ignored in fermion loops, the 
following quantum number is respected for all processes 
involving external bosons: 

+ 1 for 7 ( 1 - ) • and M2(0+), 
- 1 for ,4 (1+) and Mi(0~). (38) 

In Sec. 5 we shall discuss the relation of this to the 
quantum number recently introduced by Bronsan 
and Low. 

C. R Invariance 

The Lagrangian (37) is not R invariant. This is 
because from (A.3) <£fermi is RP invariant only if 

RPV(RP)'1=V,T, 

RP A(RP)~l = AfT, 

while from <£meson is invariant only if 

RPV(RP)~1=VT, 

RPA(RP)~1^=-AT. 

(39) 

(40) 

These clearly are contradictory requirements, and 
therefore (37) is R invariant if and only if 

A = -A' (X2=F2=Fz). 
(41) 

D. The Structure (SU3)LX(SU3)i2 

The choice (41) is highly restrictive. Explicitly, the 
relevant gauge transformations are 

fL^UotVtfLVr1, (42) 

Mf=ViMV2~
l. 

There are just two gauge fields SV(F) and SA(D) and 
the (linear part of) <£int equals 

SV(F) ( [ 7 M ] + C ^ I , M J + [ d J l f 2,4f 2]) 

+SA(D)({y,y5} + {dM2,Mi}-{dMhM2}). (43) 

This remarkable mixture of equal parts of (V—F) 
+ (A—D) currents seems to present the most attrac
tive choice for a first approximation to a strong inter
action theory. We discuss this further in Sec. 5. 

Note that the transformations (42) leave Yukawa
like terms 

i Tr(^^t7475M^L+H.c.) ==i TnAtT475M"1^-Tr^tT4M2^ 

invariant. These in fact are the only 'double' trans
formations to do so. 

E. Other Special Cases 

I t is not of course, essential to assume that (as we 
did so far) that Mi and M2 are particles of opposite 
parities. If there exist two basic pseudoscalar ninefolds 
(Mi, M2=0—), a PR-invariant Lagrangian can be 
constructed as follows: 

(1) For even (MhM2) R-parity, if 

Xi=Fi=Fz, 

X2—F2—F4. 

No A couplings, though both V—F and V—D inter
actions exist, 
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(2) For odd (MhM2) R-parity, if 

X\=X2=Fi=F2== Fz=-f^4 

only F—F couplings are allowed. 

5. FROM (SU3)LX(SU3)i2 TO SU3 

As shown in (37) a parity-conserving strong inter
action theory admits of four sets of gauge particles 
SV(F), SV(D), $A(F), and SA(D), with spin-zero 
mesons interacting equally with S(F)+S(D) or 
S(F)—S(D) combinations. If R invariance is further 
imposed, we get an economical special choice which 
exhibits a 'symmetry' between V—F and A— D 
couplings. For either theory to represent the physical 
situation we need (1) the existence of a ninefold Mi(0—) 
= (ri,iryK,a) and a ninefold M2(0+)=(ri',ir',K',<r'), be
sides the fermion ninefold \p (possibly A, 2 , S, N, F0*); 
and (2) the existence of both (1 — ) and (1+) gauge 
particles. 

Consider for simplicity the special theory given by 
the Lagrangian in (43) [though all considerations apply 
equally to the general case (37)]. Without the Fermi 
mass term, (43) is invariant for (U"3XU3)i2X ( U 3 X U 3 ) L 
transformations (42). For strong interactions we wish 
however to particularize to SU3, i.e., to invariance for 
A' = XAX~\ X=expi(Tiei) i = l , • • -8. 

There are two equivalent ways of achieving this. 

(a) Introduce the SU3 [but not (SU3)LX(SU3)i2 in
variant] fermion mass term 

« C » = - ' ( w 0 ) T r ^ t 7 ^ . (44) 

Using Appendix I, 

d^J^iA) = - 2m0 Hy475(^,^0:} . 

(b) One may rewrite (44) in the form 

£ m = i Tr^ t7475(M)^L+H.c . , 

where we assume that the expectation value M is 
nonzero only for the component M20; i.e., 

<</> = <M2°>=V$wo. (45) 

One may now redefine the field M2, in the following 
manner 

M2=M2
/+v3wo. 

In terms of M%\ (43) equals 

£ ( in = £ ( * ' ) - (3m0
2g2) T r ( ^ ) 2 + w 0 / 2 Tr(dMxS

A) 
-mo/^/2 Ti({SA

9M%')}SA). (46) 

The extra (SU3 invariant) terms on the right por-
vide a resolution10 of the standard dilemma of gauge 
theories—the inability to provide for single emission 
of Yukawa mesons. This is because the interaction 
term SAdM\ combined with ^\f/SA, gives an effective 

10 A. Salam and J. C. Ward, Nuovo Cimento 19, 167 (1961). 

Yukawa pseudovector D interaction proportional to 

w0i/'t(#i)747M75{ (dMx/dXy) ( x 2 ) , f (x i )}AF F f e -x 2 ) . 

Note that the ansatz (45) gives an additional mass 
term in (46) for the SA particles, in contrast to the Sv 
particles. 

(c) Summarizing, the (ill-understood) vacuum-de
generacy assumption (If 20) 5^0 gives a natural way to 
reduce the general symmetry to SU3. This mechanism 
seems to be connected with the appearance of fermion 
mass [see (b) above], with the Yukawa coupling 
constant and with a mass difference between the (1+) 
and (1 — ) gauge particles. 

(d) The special (V-F)+(A-D) theory admits of 
PR invariance for the full Lagrangian with PR parities: 

+ 1 for p, <£, K* and </, T, r)f, kf, 

— 1 for co ( = $ov) and a, w, rj, k. 

For the general non-PJ^-invariant Lagrangian (37) 
naturally no such assignment is possible. However, as 
remarked earlier, this general case too admits of the 
quantum number: 

+ 1 for (1 — ) particles like co, p, <£, K* 

and for (0+)*', TT', q', Kf, 

- 1 for (1+) particles like a/, p', <£', K*' 

and for (O-)o-, x, 77, K, 

when the fermion mass term is ignored. This quantum 
number agrees with the Bronzan-Low number A 
(conserved only when fermion interactions are alto
gether omitted) for 7, p, <£ and w, y, K. For co there is no 
agreement and therefore in our scheme co —-> 3ir is 
forbidden in the limit of fermion masses zero. 

(e) Assuming further that (7)') = (M28)T'£0 Sakurai, 
Glashow, and Coleman11 have succeeded in giving a 
coherent picture of SU3 breaking. Clearly even if this 
assumption is superposed on the theory, the R in
variance of the special symmetrical Lagrangian (43) 
will not allow any p—% mass difference to develop. 
This special (V—F)-\-(A—D) theory can therefore 
only be an approximation to the physical situation a 
representation for which is provided by the non-Pi^-
invariant expression (37) with, 

o-^o-'+VSmo, 

Concluding, the double-gauge principle leads in a 
natural manner to D as well as F interactions. We may 
go further and in fact assert that double gauges are 
necessary for the gauge appearance of D currents in 
the interaction Lagrangian. Further in order that both 

11 The tadpole mechanism was introduced in elementary-
particle physics by J. Schwinger, Ann. Phys. (N.Y.) 2, 407 (1957). 
I t was used by A. Salam and J. C. Ward (Ref. 10) for strong and 
weak interactions. For applications to derive mass formulas see 
J. J. Sakurai [Phys. Rev. 132, 434 (1963)]; and S. Coleman and 
S. Glashow, Harvard (to be published). 
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V and A gauge couplings can exist, the theory must be 
parity-doublet symmetric, i.e., both (1+) and (1—) as 
well as (0+) and (0—) particles have to appear. The 
underlying group structure is not simply the structure 
of SU3 but corresponds in general to (SUaXSUs)!, 
X(SU3XSU3)i2. 
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APPENDIX I 

Write £maSS= :WoTr(^tT4^L+^LtT4^^). For the 
general transformation (25) 

£ m a s s / = : m0 T r (^R\7^LS+ H.C.) , 

where R=VrlVz, S==Vr1V2- Infmitesimally [for 
notation see (3) J 

8£ = im0(^R^yiRa(es- €1)^L+\^Riy4LT(X(e2~ e4)" 

~-^LhiTa(ez~~e1)
a^R-~^Lh^RTa(€2-eda> 

Using (15) 

dliJ,(F1+Fs) = 0=d,Jll(F2+Fi). 

This shows that the vector currents are always con
served. Also 

A . S A L A M A N D J . C . W A R D 

TABLE I. Table of parities. 

Thus 

Let 

where 

dJfiFz-F!) = niotfTa(ym)t, 

dpJf(F2- F4) = m^\ (ym)fT«. 

djf (A - D)aniotf7m{ T"^} 

d»Jf{A-F)am$\yas[Ta,\l/~]. 

APPENDIX II 

A. Bilinear Currents 

F=iOW+tfOp., 

0 = 7 4 7 , = 0t (V), 

0=747,75= - 0 ' {A), 

0=7475 = - 0 ' (P ) , 

0 = 7 4 = - 0 ' (5) , 

and 0* are the transposed Y'S (in the Majorana repre
sentation). Note, for a Hermitian field F, (RC)F 
(RQ-^dzF. 

Consider the Fermi Lagrangian (32). 

(1) For P invariance we need 

P FiP~1=—F\ 
1 8? (Al) 

P F2P~1=-F4j 

V F/D 

A F/D 

P F/D 

S F/D 

R 

- 1 
+ 1 
- 1 
+1 
- 1 
+1 
- 1 
+1 

RC 

+1 
- 1 
- 1 
+1 
- 1 
+1 
- 1 
+ 1 

RP 

+ 1 
- 1 
- 1 
+1 
+1 
- 1 
- 1 
+1 

RFC 

- 1 
+ 1 
- 1 
+1 
+ 1 
- 1 
- 1 
+1 

and 

gi^gz 

(2) For R invariance: 

mFl=mFzj 

(A2) 

(A3) 

(A4) 

R 2 ^ - 1 = - i V ^ 

R FiR-^-FJ, 
and 

gl=g2, g*=gl. 

(3) For RP invariance: 

PR F^PRy^+FJ, 

PR F2(PR)~1=+FzT. 

(4) For RC invariance : 

CRFxiCRr^Fi, 

CR F2(CR)-1=F3. 

B. Meson Fields 

Depending on relative R and P parities of Mh M2y 

the following cases arise for (33): 

(1) For P invariance we need: 

PX1P~1=~X2 if A f i = 0 - , A f 2 = 0 + , 

PX1P-1 = —X1 for even relative Mh M2 P parity. (A5) 

(2) R invariance: 

RXiR-1^ -X2
T for even (MhM2) R parity 

— —XiT for odd R parity. 

(3) RP invariance: 

RPX1 (RP)-1 = XiT for odd P and even R parity 
= X2

T for odd P and odd R parity. 

(4) RC invariance: 

(RC)Xi (RC)-1 = Xi for even R parity 

(RC)M(RC)-1=M 

(RC)Xt (RC)-1 = + X2 for odd £ parity 
(i?0)M'(i?C)-1=lf+. 

(A6) 

(A7) 

(A8) 


